Prognostic Factors in Apical Surgery with Root-end Filling: A Meta-analysis

Thomas von Arx, DMD,* Miguel Peñarrocha, DDS, PhD,[†] and Storgård Jensen, DDS^{*‡}

Abstract

Introduction: Apical surgery has seen continuous development with regard to equipment and surgical technique. However, there is still a shortage of evidence-based information regarding healing determinants. The objective of this meta-analysis was to review clinical articles on apical surgery with root-end filling in order to assess potential prognostic factors. Methods: An electronic search of PubMed and Cochrane databases was performed in 2008. Only studies with clearly defined healing criteria were included, and data for at least two categories per prognostic factor had to be reported. Prognostic factors were divided into patientrelated, tooth-related, or treatment-related factors. The reported percentages of healed teeth ("the healed rate") were pooled per category. The statistical method of Mantel-Haenszel was applied to estimate the odds ratios and their 95% confidence intervals. Results: With regard to tooth-related factors, the following categories were significantly associated with higher healed rates: cases without preoperative pain or signs, cases with good density of root canal filling, and cases with absence or size \leq 5 mm of periapical lesion. With regard to treatment-related factors, cases treated with the use of an endoscope tended to have higher healed rates than cases without the use of an endoscope. Conclusions: Although the clinician may be able to control treatment-related factors (by choosing a certain technique), patient- and tooth-related factors are usually beyond the surgeon's power. Nevertheless, patientand tooth-related factors should be considered as important prognostic determinants when planning or weighing apical surgery against treatment alternatives. (J Endod 2010;36:957-973)

Key Words

Apical surgery, healing predictors, meta-analysis, prognostic factors, root-end filling A pical surgery is often a last resort to maintain an endodontically treated tooth with a persistent periapical lesion. After the introduction of microsurgical principles and new materials for apical obturation in endodontic surgery in the early 1990s, healed rates of apical surgery with root-end filling have improved but remain around 80% to 90% (1).

In order to enhance the outcome of a surgical procedure, three different strategies may be considered: (i) improvement of technical equipment/instruments, (ii) changes in surgical technique, and (iii) appropriate case selection. The choice of treatment, however, is often based on individual experience and skill rather than on evidencebased prognostic factors. The latter would allow narrowing the indication for a certain treatment by weighing various predictors and thereby increasing the likelihood of a favorable outcome.

Limited information is available with regard to prognostic factors in apical surgery. Most clinical studies on apical surgery evaluate the outcome with respect to the root-end filling material. Only a few clinical studies have assessed potential prognostic factors in apical surgery, such as the age and sex of the patient, the type of treated tooth, or the presence of a radicular post. Studies evaluating multiple prognostic factors with regard to healing outcome of periapical surgery are sparse (2-6). The number of subjects within a single study may often be too small to find a statistically significant difference comparing two or more categories with regard to healing outcome. Systematic reviews and meta-analyses may provide additional and important information to the clinician in order to weigh apical surgery against treatment alternatives such as conventional endodontic (re-) treatment or tooth extraction and prosthodontic replacement.

The first systematic review of endodontic surgery by Peterson and Gutmann (7) evaluated the outcome of resurgery cases. They reported that 35.7% of cases healed successfully after resurgery, 26.3% healed with uncertain results, and 38% did not heal at the 1-year follow-up. A systematic review of the in vivo performance of retrograde obturation materials was published by Niederman and Theodosopoulou (8). Most of the included studies compared amalgam with a competitor material. They reported a significant caveat because there were only two randomized clinical trials (RCTs) and only one controlled clinical trial for each material. Mead et al (9) performed an electronic and manual search to investigate the levels of evidence for the outcome of endodontic surgery. They wrote that the majority of frequently quoted "success and failure" studies were case series (level of evidence 4 according to the Centre for Evidence-based Medicine at Oxford). Del Fabbro et al (10) performed a systematic review comparing the outcome of surgical versus nonsurgical retreatment. The finding that healed rates, at least in the short-term, were higher for cases treated surgically as compared with those treated nonsurgically was based on two RCTs only. They also found in a single RCT that healed rates in the medium- to long-term were very similar

From the *Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland; [†]Department of Oral Surgery, Valencia University Medical and Dental School, Valencia, Spain; and [†]Department of Oral and Maxillofacial Surgery, Copenhagen University Hospital, Denmark

Address requests for reprints to Dr Thomas von Arx, Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010 Bern, Switzerland. E-mail address: thomas.vonarx@zmk.unibe.ch.

^{0099-2399/\$0 -} see front matter

Copyright o 2010 American Association of Endodontists. doi:10.1016/j.joen.2010.02.026

TABLE 1. Included Clinical State	Studies $(N = 38)$				
Author(s)	Follow-up	Study design	N teeth initial/N teeth final	Drop-out rate (%)	Assessed factor(s)
Persson, 1982 (116) Dalal & Gohil,	1 year 6 months	Prospective Prospective	27/26 40/40	4 0	Type of tooth Retrofilling material
1983 (117) Skoglund & Persson,	6 months-7 years	Retrospective ^a	Unknown/27	NA	Age, sex
Dorn & Gartner, 1990 (119)	6 months-10 years	Retrospective	Unknown/488	NA	Retrofilling material
Friedman et al, 1991 (120)	6 months-8 years	Retrospective	Unknown/136 ^b	NA	Age, sex, type of tooth
Lustmann et al, 1991 (2)	6 months-8 years	Retrospective	Unknown/136 ^c	NA	Type of restoration, percussion sensitivity, preoperative signs, length of root-canal filling, density of root-canal filling, presence of post, size of lesion, outline of lesion, experience of surgeon
Waikakul & Punwutikorn, 1991 (121)	6 months-2 years	Prospective	66/62	6	Retrofilling material
Cheung & Lam, 1993 (122)	Minimum 2 years	Retrospective	Unknown/32	NA	Type of tooth
Pantschev et al, 1994 (123)	3 years	Prospective	Unknown/103	NA (21% patients)	Retrofilling material
Jesslén et al, 1995 (124)	5 years	Randomized clinical trial ^d	105/82	22	Retrofilling material
August, 1996 (125) Danin et al, 1996 (126)	Minimum 10 years 1 year	Retrospective ^e Prospective ^f	Unknown/19 19/19	NA 0	Type of tooth Length of root canal filling, size of lesion
Rud et al, 1997 (127)	2-4 years	Retrospective	909/551	39	Type of tooth, root canal filling related to resection level
Bader & Lejeune, 1998 (128)	1 year	Prospective	320/254	21	Technique of root-end cavity preparation, use of laser irradiation
Testori et al, 1999 (129)	1-6 years (mean 4.6 years)	Retrospective ⁹	Unknown/302	NA	Type of tooth, technique of root-end cavity preparation, retrofilling material
Zuolo et al, 2000 (130)	1-4 years	Prospective	114/102	11	Age, sex, type of tooth, histopathology of lesion
Rahbaran et al, 2001 (3)	Minimum 4 years	Retrospective ^h	Unknown/176	NA	Age, gender, type of tooth, coronal seal, preoperative pain, preoperative signs, presence of root canal filling, density of root-canal filling, endodontic re-treatment, presence of post, presence of lesion, type of surgery, type of surgeon, technique of root-end cavity preparation, retrofilling material
Jensen et al, 2002 (4)	1 year	Randomized clinical trial	134/122	9	Retrofilling material
Rubinstein & Kim, 2002 (131)	5-7 years	Prospective ⁱ	91/59	35	Type of tooth
Vallecillo et al, 2002 (132)	1 year	Prospective	29/24	17	Technique of root-end cavity preparation
Chong et al, 2003 (133)	2 years	Randomized clinical trial	131/108	18 ^j	Retrofilling material
Maddalone & Gagliani, 2003 (134)	3 years	Prospective	146/120	22	Type of tooth, presence of post
Schwartz-Arad et al, 2003 (135)	6-45 months (mean 11 months)	Retrospective ^k	262/122	53	Type of surgery, retrofilling material

129/115

11

Prospective

von Arx et al, 2003 (136)

1 year

(Continued)

Use of endoscope

Author(s)	Follow-up	Study design	N teeth initial/N teeth final	Drop-out rate (%)	Assessed factor(s)
Wesson & Gale, 2003 (137)	Minimum 5 years	Prospective	1007/790	22	Age, sex, type of tooth, presence of lesion, buccal bone plate
Sahlin Platt & Wannfors, 2004 (138)	1 year	Randomized clinical trial	34/34	0	Length of root canal filling, retrofilling material
Wang et al, 2004 (5)	4-8 years	Prospective ¹	155/90	42	Age, length of root canal filling, endodontic retreatment, size of lesion, type of surgery, use of hemostatic agent, intraoperative complications, restoration at follow-up
Wang et al, 2004 (139)	6 months-12 years	Retrospective	238/194	18	Type of surgery
Gagliani et al, 2005 (140)	5 years	Prospective	185 ^m /164 ^m	11	Type of tooth, type of surgery
Lindeboom et al, 2005 (141)	1 year	Randomized	100/100	0	Retrofilling material
Taschieri et al, 2005 (142)	1 year	Randomized	50/46	8	Type of tooth, presence of post,
Filippi et al. 2006 (143)	1 year	Prospective	114/110	4	Type of tooth, preoperative pain, presence of post, use of antibiotics
Taschieri et al, 2006 (144)	1 year	Randomized	80/71	11	Type of tooth, presence of post, use of endoscope
Tsesis et al, 2006 (145)	6 months-4 years	Retrospective	110 ⁿ /71 ⁿ	35	Technique of root-end cavity
de Lange et al, 2007 (146)	1 year	Randomized clinical trial	399/290	27	Type of tooth, technique of root-end cavity preparation
von Arx et al, 2007 (6)	1 year	Prospective	194/191	2	Age, sex, smoking , type of tooth, preoperative pain, preoperative signs, length of root-canal filling, presence of post, presence of lesion, size of lesion, marginal bone level , type of surgery, use of antibiotics, retrofilling material, postoperative complications
Wälivaara et al, 2007 (147)	1 year	Prospective	56/55	2	Type of tooth
Taschieri et al, 2007 (148)	1 year	Prospective	30/27	10	Presence of post

NA, not available.

TABLE 1. (Continued)

Boldface font indicates that no other study had assessed this prognostic factor; hence, this factor was not further evaluated.

^aIn 3 out of 27 teeth (11%) no root-end filling was placed.

^bUnit = root.

^cUnit = root; in 13 out of 136 roots (10%), no root-end filling was placed; same sample as Friedman et al (1991) but data not duplicated.

^dSame sample as Zetterqvist et al (1991) (108)

^eApicectomies with and without retrofilling, but data coud be extracted for retrofilling cases.

^fRandomized study comparing conventional retreatment and apical surgery; only surgical cases included for this analysis.

^gUnit = root; all cases with standard retropreparation were retrofilled with amalgam, and all cases with ultrasonic retropreparation were filled with SuperEBA.

^hIn 22 out of 176 teeth (12.5%), no root-end filling was placed; the very low healing rate was attributed to several factors by the authors (ie, no "incomplete healing" category, more complex profile of referred cases, 4-year follow-up).

¹Unit = root; same sample as Rubinstein & Kim (1999) (110); study started originally with 128 cases; only successful 1-year-cases were assessed after 5-7 years.

Forty-five of 131 (34%) failed to attend the 2-year follow-up, but 22 cases with complete healing when reviewed at 1 year were included in the "complete healing" category for the 2-year review.

^kOnly radiographic (not clinical) determination of healing; "incomplete healing" was defined as "uncertain healing" according to specified criteria.

¹In 15 out of 155 teeth (10%), no root-end filling was placed.

^mPatients (but evaluation unit = root, n = 231 roots); "incomplete healing" was defined as "uncertain healing" according to specified criteria.

ⁿPatients (but evaluation unit = tooth, n = 88 teeth).

TABLE 2. ORS and CIS of Prognostic Factors with Two Categorie	TABLE 2.	ORs and	CIs of	f Prognostic	Factors	with	Two	Categorie
--	----------	---------	--------	--------------	---------	------	-----	-----------

		CI (0.95)			
	OR	Lower limit	Upper limit	P value	Test for homogeneity P value
Patient-related factors					
Age	1.07	0.84	1.36	0.6	0.13
Sex	0.85	0.67	1.07	0.17	0.61
Tooth-related factors					
Preoperative pain	0.48	0.29	0.77	<0.01	0.13
Preoperative signs	0.63	0.39	1.02	<0.01	0.07
Length of RCF	0.77	0.5	1.19	0.24	0.49
Density of RCF	2.00	1.19	3.36	<0.01	0.74
Endodontic retreatment	1.56	0.77	3.16	0.22	0.66
Presence of post/screw	0.76	0.53	1.09	0.13	0.65
Presence of lesion	0.73	0.55	0.97	0.01	0.21
Size of lesion	1.82	1.13	2.92	0.01	0.43
Treatment-related factors					
Type of surgery	2.06	1.46	2.91	<0.01	<0.01
Use of antibiotics	0.66	0.32	1.36	0.27	0.28
Use of endoscope	2.43	0.99	5.97	0.05	0.77
Technique of root-end cavity preparation	0.32	0.24	0.44	<0.01	0.01

CI, confidence interval; OR, odds ratio; RCF, root canal filling.

for the two procedures. The authors concluded that there is currently scarce evidence for a sound decision-making process among alternative re-treatments of periradicular pathosis.

Friedman (11) published a thorough review about the prognosis and expected outcome of apical surgery. The article comprehensively evaluated pre- and intraoperative factors that may influence the outcome of apical surgery. The review covered the material published until early 2005. With regard to preoperative factors, the outcome was found to be better in teeth with small lesions and excessively short or long root canal fillings, and it was poorer in teeth treated surgically for the second time. With regard to intraoperative factors, the choice of the root-end filling material and the quality of the root-end filling were found to influence the outcome. The objective of the present study was to perform an updated meta-analysis to assess potential prognostic factors for healing outcome in apical surgery with root-end filling by reviewing all levels of clinical evidence.

Material and Methods

The main inclusion criterion for the selection of a clinical study was that it had evaluated apical surgery with placement of a root-end filling. Studies on apical surgery with orthograde root canal filling or about apicectomy alone without root-end filling were excluded. In addition, experimental and animal studies were excluded. The literature search with PubMed and Cochrane databases was conducted in 2008, including articles published from 1980 to 2007 in the following languages: English, German, French, Spanish, Italian, Portuguese, and Scandinavian languages. The search strategy was based on the following Medical Subject Heading (MeSH) terms: "(apical surgery) OR (apical microsurgery) OR (periapical surgery) OR (periradicular surgery) OR apicoectomy OR apicectomy OR (tooth apex surgery) NOT (case report OR case reports) NOT (in vitro) NOT experimental."

Additionally, a hand search was performed of the following journals: Journal of Endodontics, International Endodontic Journal, Oral Surgery Oral Medicine Oral Pathology (name changed to Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics in 1995), Endodontics and Dental Traumatology (name changed to Dental Traumatology in 2001), Journal of Oral and Maxillofacial Surgery, and International Journal of Oral and Maxillofacial Surgery. The assessed outcome had to be periapical healing based on

960 von Arx et al.

radiographic and clinical parameters. Studies reporting other outcomes (eg, postsurgical morbidity/quality of life, soft tissue healing, and so on) were excluded. The clinical studies had to have a minimum of 10 subjects with a minimum follow-up period of 6 months. Apical surgery had to include the placement of a root-end filling. In addition, only studies with clearly defined radiographic and clinical healing criteria were accepted, and healing had to be reported for at least two categories of a specific prognostic factor. All studies were assessed separately by two of the three authors to decide on inclusion or exclusion and in case of disagreement consensus was reached after discussion.

To simplify the evaluation, the prognostic factors were divided into patient-related, tooth-related, and treatment-related factors. To allow for comparison, an eligible prognostic factor had to have two or more categories. If only a single study reported data on a prognostic factor, this factor was not included in this analysis. Data from two or more studies on a specific prognostic factor were pooled to assess whether a statistically significant difference could be calculated for percentages of healed cases across the categories of the prognostic factor.

Clinical and radiographic measures were used and combined for a dichotomous outcome classification: healed versus not healed (5). Teeth were classified as healed when there were no clinical signs and symptoms and the periapical tissues presented radiographically with complete or incomplete (scar tissue) healing according to the criteria established by Rud et al (12) and Molven et al (13). The percentage of healed teeth was defined as the "healed rate."

Statistics

In order to analyze binary factors, the estimated odds ratio and its confidence interval were calculated as well as the corresponding p value for the null hypothesis of an odds ratio equal to 1. Forest plots were generated for every such factor in order to have a better understanding of the influence of the included studies. These plots include Mantel-Haenszel odds ratios with corresponding confidence intervals. Here, a p value for the null hypothesis of homogeneity was computed in addition to performing Woolf's test.

In contrast, categoric factors with three or more possible outcomes were analyzed by computing the estimator and the corresponding confidence region of the healed rate for each category

		Confidence i	nterval (95%)		
	Estimated healed rate (%)	Lower limit (%)	Upper limit (%)	Pairwise comparisons	P value
Type of treated tooth (with jaw specification)					
Maxillary anterior teeth	85.2	80.7	89.0	vs maxillary premolars vs maxillary molars vs mandibular anterior teeth vs mandibular premolars vs mandibular molars	0.126 0.108 0.927 0.525 0.004*
Maxillary premolars	70.8	65.8	75.4	vs maxillary molars vs mandibular anterior teeth vs mandibular premolars vs mandibular molars	0.917 0.237 0.785 0.304
Maxillary molars	71.6	67.7	75.3	vs mandibular anterior teeth vs mandibular premolars vs mandibular molars	0.254 0.793 0.178
Mandibular anterior teeth	87.8	78.7	94.0	vs mandibular premolars vs mandibular molars	0.568 0.069 ⁺
Mandibular premolars Mandibular molars	75.3 63.7	65.0 60.6	83.8 66.9	vs mandibular molars	0.344
Type of treated tooth (without jaw specification)	76.6	72 4	70 F	ve promolore	0 7 2 0
	76.6	/5.4	79.5	vs molars	1.0
Premolars Molars	74.2 76.6	70.8 73.8	77.4 79.1	vs molars	0.682
Retrofilling material Amalgam	57.9	54.3	61.5	vs GIC vs IRM	0.470 0.052 [†]
				vs MTA vs SuperEBA vs Retroplast vs other	<0.001* 0.086 [†] 0.020* 0.147
GIC	51.2	42.2	60.1	vs IRM vs MTA vs SuperEBA vs Retroplast	0.059 [†] 0.002* 0.087 [†] 0.026*
IRM	71.6	66.2	76.6	vs other vs MTA vs SuperEBA vs Retroplast vs other	0.091 ⁺ 0.097 ⁺ 0.852 0.491 0.777
MTA	91.4	85.9	95.2	vs SuperEBA vs Retroplast vs other	0.072 [†] 0.449 0.367
SuperEBA	69.8	64.4	74.9	vs Retroplast vs other	0.401
Retroplast Other	80.0 75.9	72.6 65.3	86.2 84.6	vs other	0.835

TABLE 3. Estimated Healed Rates and 95% CIs of Prognostic Factors with More than Two Variables

GIC, glass ionomer cement; IRM, intermediate restorative material; MTA, mineral trioxide aggregate; EBA, ethoxy benzoic acid.

*p < 0.05.

 $\dagger p < 0.1.$

separately. Finally, pair-wise comparisons between each category of these factors were performed using the Fisher exact test of independence of rows and columns in a contingency table with fixed marginals. Because of the explorative nature of the study, no correction of the p values for multiple testing was applied. All analyses were performed with the statistical program R (R 2.9.0; The R Foundation for Statistical Computing, Vienna, Austria).

Results

The initial literature search yielded a total of 695 articles. Based on their abstracts, 555 papers were excluded because they were case

reports, experimental animal studies, or in vitro studies. The remaining 140 clinical articles were screened for data on prognostic factors. An additional 102 articles had to be excluded for the following reasons: (i) the apical surgery did not include the placement of a root-end filling or the study included various surgical procedures (14-39); (ii) the study did not give details about prognostic factors related to periapical healing (40–74); (iii) only one category of a specific prognostic factor had been assessed (ie, there was no comparison of two or more categories; eg, only males instead of males vs females) (75–99); (iv) two categories of a prognostic factor had been assessed, but only a single study provided data on this prognostic

Figure 1. Table and forest plot of the OR of age: younger versus older.

factor (100-106); (v) same study published in other language or same material published in a previous article with a shorter follow-up (107-112); and (vi) study excluded for other reason (113-115).

The final number of included clinical studies was 38 (Table 1). The number of studies per prognostic factor ranged from 6 to 7 for patient-related factors, from 2 to 16 for tooth-related factors, and from 2 to 13 for treatment-related factors. The odds ratios (ORs), 95% confidence intervals (CIs), and p values of prognostic factors with two categories are shown in Table 2. The estimated healed rates and confidence intervals (0.95) of prognostic factors with more than two categories are presented in Table 3.

Patient-related Factors

Seven studies provided data regarding age (3, 5, 6, 118, 120, 130, 137) (Fig. 1). Cutoff ages dividing patients into younger or older categories were 40 years (3), 41 years (118, 120, 130), and 45 years (5, 6, 137). Healed rates did not differ significantly between younger and

older patients (OR = 1.07; 95% CI, 0.84-1.36; p = 0.6). Six studies reported data on sex as prognostic factor (3, 6, 118, 120, 130, 137) (Fig. 2). Healed rates did not differ significantly between males and females (OR = 0.85; 95% CI, 0.67-1.07; p = 0.17). Smoking as a prognostic factor had only been assessed in one study (6) and was not further evaluated in this analysis.

Tooth-related Factors

A total of 12 studies provided information with regard to healed rates of treated tooth groups (6, 116, 120, 122, 125, 127, 129, 130, 137, 142, 144, 147) comparing maxillary and mandibular anterior teeth and premolars and molars (Table 4), and 16 studies reported healed rates pooling anterior teeth, premolars, and molars irrespective of jaw (3, 6, 120, 122, 125, 127, 129–131, 134, 140, 142–144, 146, 147) (Table 5). Maxillary anterior teeth (85.2%) and mandibular anterior teeth (87.8%) showed higher estimated healed rates than the other

Figure 2. Table and forest plot of the OR of sex: male versus female.

Figure 3. Table and forest plot of the OR of preoperative pain: pain versus no pain.

tooth groups, whereas mandibular molars had the lowest estimated healed rate (63.7%) (Table 3).

The following tooth-related factors showed significant differences when the reported healed rates of their categories were compared: (i) preoperative pain (3, 6, 143) (Fig. 3): cases with preoperative pain had a significantly lower healed rate than cases without preoperative pain (OR = 0.48; 95% CI, 0.29-0.77; p < 0.01), (ii) preoperative signs (2, 3, 6) (Fig. 4): cases with preoperative signs had a significantly lower healed rate than cases without preoperative signs (OR = 0.63; 95% CI, 0.39-1.02; p < 0.01; (iii) density of root canal filling (2, 3) (Fig. 5): cases with good radiographic density of the existing root canal filling had a significantly higher healed rate than cases with poor density (OR = 2.00; 95% CI, 1.19-3.36; p < 0.01); (iv) presence of lesion (3, 6, 137) (Fig. 6): cases with a radiographically visible periapical lesion had a significantly lower healed rate than cases without such a lesion (OR = 0.73; 95% CI, 0.55-0.97; p = 0.01), and (v) size of lesion (2, 5, 6, 126) (Fig. 7): cases with a radiographic lesion size \leq 5 mm had a significantly higher healed rate than cases with a lesion size >5 mm (OR = 1.82; 95% CI, 1.13-2.92; p = 0.01).

In contrast, the factors length of root canal filling (2, 5, 6, 126, 138) (Fig. 8), endodontic retreatment before apical surgery (3, 5) (Fig. 9), and the presence of post/screw (2, 3, 6, 134, 142–144, 148) (Fig. 10) were not significant when the healed rates of their categories were compared. With regard to the definition of the length of root

canal filling, two studies defined inadequate length as overfilled or >2 mm underfilled (2, 6), two studies as >3 mm underfilled (126, 138), and one study did not specify the definition (5).

For each of the following tooth-related factors, only one study reported data: type of permanent restoration (2), quality of coronal seal/ restoration (3), percussion sensitivity (2), presence of root canal filling (3), outline of lesion (2), marginal bone level (6), extent of buccal bone plate (137), presence of tunnel lesion (106), distance between root canal filling and resection level (127), histopathology of lesion (130), and type of restoration at follow-up (5). Therefore, these factors were not further assessed in the present study.

Treatment-related Factors

The following treatment-related factors showed significant differences when the reported healed rates of their categories were compared:

- 1. Type of surgery (3, 5, 6, 135, 139, 140) (Fig. 11): cases with firsttime surgery had a significantly higher healed rate than resurgery cases (OR = 2.06; 95% CI = 1.46-2.91; p < 0.01). However, the included material was not homogenous (p < 0.01).
- 2. Technique of root-end cavity preparation (3, 128, 129, 132, 145, 146) (Fig. 12): cases in which the root-end cavity preparation was done with a bur had a significantly lower healed rate than cases

Figure 4. Table and forest plot of the OR of preoperative signs: signs versus no signs.

TABLE 4. Tooth-related Factors: Type of Tooth with Jaw Specification (maxillary anterior teeth,* maxillary premolars, maxillary molars, mandibular anterior teeth,* mandibular premolars, and mandibular molars [N = 2,318])

Author(s)	Total (<i>N</i>)	No. of healed/total maxillary anterior teeth	% healed maxillary anterior teeth	No. of healed/total maxillary premolars	% healed maxillary premolars	No. of healed/total maxillary molars
Persson, 1982 (116)	26	_	_	_	_	14/18
Friedman et al, 1991 (120)	136	—	—	38/82	46.3	6/12
Cheung & Lam, 1993 (122)	32	—	—	11/14	78.6	3/5
August, 1996 (125)	16	3/5	60.0	5/6	83.3	2/5
Rud et al, 1997 (127)	551	74/88	84.1	78/108	72.2	121/137
Testori et al, 1999 (129)	302	48/62	77.4	50/66	75.8	54/62
Zuolo et al, 2000 (130)	102	33/34	97.1	18/19	94.7	17/20
Wesson & Gale, 2003 (137)	790	—	—	—	—	149/262
Taschieri et al, 2005 (142)	46	18/21	85.7	4/4	100.0	2/2
Taschieri et al, 2006 (144)	71	24/26	92.3	8/8	100.0	
von Arx et al, 2007 <mark>(6)</mark>	191	46/54	85.2	35/42	83.3	22/24
Wälivaara et al, 2007 (147)	55	13/14	92.9	7/10	70.0	11/13
Total	2318	259/304	85.2	254/359	70.8	401/560

*Anterior teeth = incisors and canines.

with microtip preparation (OR = 0.32; 95% CI, 0.24-0.44; p < 0.01). However, the included material was not homogenous (p = 0.01).

The use of an endoscope (136, 144) (Fig. 13) showed a borderline significance (OR = 2.43; 95% CI, 0.99-5.97; p = 0.05) (ie, cases using an endoscope during surgery tended to show a higher healed rate than cases without using an endoscope). No significant difference was found for healed rates in cases treated with or without antibiotics (6, 143) (Fig. 14) (OR = 0.66; 95% CI, 0.32-1.36; p = 0.27).

With regard to the retrofilling material, a total of 13 studies compared at least two different materials (3, 4, 6, 117, 119, 121, 123, 124, 129, 133, 135, 138, 141) (Table 6). Mineral trioxide aggregate (MTA) was found to have the highest estimated healed rate (91.4%) compared with the competitor materials (Table 3).

Treatment-related factors for which there were data from only one study included: experience of surgeon (2), type of surgeon (3), use of

hemostatic agent (5), type of microtip (142), use of laser irradiation (128), and occurrence of intraoperative or postoperative complications (5). Six studies evaluated the use of a regenerative technique in apical surgery (101-106); however, each study had assessed a different technique and data could not be pooled.

Discussion

The present meta-analysis aimed at evaluating possible prognostic factors for healing outcome in apical surgery with root-end filling. The consideration of prognostic factors should become a standard tool for case selection and treatment in apical surgery. Advantages and disadvantages of alternative treatments, such as conventional endodontic revision or tooth extraction as well as tooth or root resection for multirooted teeth, should be carefully weighed against apical surgery during case evaluation. Therefore, information about healing predictors might be important in the process of deciding on the best therapeutic option. However, the present

TABLE 5.	Tooth-related	Factors:	Type of Tooth	without Jav	v Specification	(anterior teeth,*	premolars,	and molars	[N =	2,488])
----------	---------------	----------	---------------	-------------	-----------------	-------------------	------------	------------	------	--------	---

Author(s)	Total (<i>N</i>)	No. of healed/total anterior teeth	% healed anterior teeth	No. of healed/total premolars	% healed premolars	No. of healed/total molars	% healed molars
Friedman et al, 1991 (120)	136	_	_	43/96	44.8	16/40	40.0
Cheung & Lam, 1993 (122)	32	_	—	14/19	73.7	6/13	46.2
August, 1996 (125)	16	3/5	60.0	5/6	83.3	2/5	40.0
Rud et al, 1997 (127)	551	96/117	82.1	93/126	73.8	260/308	84.4
Testori et al, 1999 (129)	302	55/69	79.7	63/81	77.8	111/152	73.0
Zuolo et al, 2000 (130)	102	37/39	94.9	23/24	95.8	33/39	84.6
Rahbaran et al, 2001 (3)	176	36/129	27.9	7/33	21.2	6/14	42.9
Rubinstein & Kim, 2002 (131)	59	22/23	95.7	16/17	94.1	16/19	84.2
Maddalone & Gagliani, 2003 (134)	120	57/62	91.9	27/30	90.0	27/28	96.4
Gagliani et al, 2005 (140)	231	19/28	67.9	49/56	87.5	113/147	76.9
Taschieri et al, 2005 (142)	46	29/32	90.6	7/8	87.5	6/6	100.0
Filippi et al, 2006 (143)	110	64/69	92.8	25/26	96.2	12/15	80.0
Taschieri et al, 2006 (144)	71	45/49	91.8	21/22	95.5	_	_
de Lange et al, 2007 (146)	290	49/58	84.5	79/97	81.4	92/135	68.1
von Arx et al, 2007 (6)	191	52/60	86.7	45/55	81.8	63/76	82.9
Wälivaara et al, 2007 (147)	55	14/15	93.3	9/13	69.2	21/27	77.8
Total	2,488	578/755	76.6	526/709	74.2	784/1024	76.6

*Anterior teeth = incisors and canines.

% healed maxillary molars	No. of healed/total mandibular anterior teeth	% healed mandibular anterior teeth	No. of healed/total mandibular premolars	% healed mandibular premolars	No. of healed/total mandibular molars	% healed mandibular molars
77.8	_	_	_	_	5/8	62.5
50.0	_	_	5/14	35.7	10/28	35.7
60.0	_	_	1/3	33.3	5/10	50.0
40.0	_	_	_	_	_	_
88.3	22/29	75.9	15/18	83.3	139/171	81.3
87.1	7/7	100.0	13/15	86.7	57/90	63.3
85.0	4/5	80.0	5/5	100.0	16/19	84.2
56.9	_	_	_	_	302/528	57.2
100.0	11/11	100.0	3/4	75.0	4/4	100.0
_	21/23	91.3	13/14	92.9	_	_
91.7	6/6	100.0	10/13	76.9	41/52	78.8
84.6	1/1	100.0	2/3	66.7	10/14	71.4
71.6	72/82	87.8	67/89	75.3	589/924	63.7

Figure 5. Table and forest plot of the OR of the density of the root canal filling: good density versus poor density.

Figure 6. Table and forest plot of the OR of the presence of a lesion: lesion versus no lesion.

Figure 7. Table and forest plot of the OR of the size of the lesion: $\leq 5 \text{ mm}$ versus >5 mm.

meta-analysis has shown that only a few clinical studies have assessed multiple prognostic factors in apical surgery. The majority of published clinical studies correlate the outcome of apical surgery with the retrofilling material. In order to determine the value of a specific prognostic factor in apical surgery with root-end filling, data from systematically selected studies were pooled to increase the statistical power. Prognostic factors were categorized as patient-related, toothrelated, or treatment-related factors.

Although the included clinical studies may differ with regard to study design, case selection criteria, surgical techniques, and healing assessment, this possible shortcoming was compensated for by the fact that studies were only included if they reported and compared data on at least two categories of a specific prognostic factor. This means that all categories of a specific study were characterized by the same bias.

Out of the 38 included studies in this meta-analysis, only 8 studies were RCTs. In five studies, the subjects were randomly allocated to different groups with regard to the retrofilling material.

Patient-related Factors

Neither of the patient-related factors (age and sex) showed significantly different healed rates for the assessed categories. The lack of significant influence of age on healed rates means that apical surgery should be considered as a treatment option also in older patients. An advanced age appears not to compromise periapical healing once a bacteria-tight apical seal has been accomplished.

Smoking as a prognostic factor was not further evaluated in this meta-analysis because only one study had reported data on this factor. In a recent review article by Duncan and Pitt Ford (149), the authors found that the literature shows a paucity of evidence relating smoking with endodontic disease and prognosis. Systemic health was not assessed as a prognostic factor in any of the included clinical studies.

With the current data, patient-related factors do not appear to be of predictive value for the outcome of apical surgery. In addition, patientrelated factors are not controllable (age and sex) or are outside the control of the surgeon (smoking cessation protocol and management of systemic health problems). Despite the lack of evidence, the clinician

Figure 8. Table and forest plot of the OR of the length of the root canal filling: adequate length versus inadequate length.

Figure 9. Table and forest plot of the OR of endodontic retreatment before apical surgery: retreatment versus no retreatment.

should be cautious about performing apical surgery in patients with local or systemic conditions that may affect hard and soft-tissue healing, such as irradiated tissue, bisphosphonate medication for malignant conditions, and poorly regulated diabetes.

Tooth-related Factors

Tooth-related factors describe the type of tooth to be treated and its condition or its associated apical lesion. Tooth-related factors, such as the quality of the existing root canal filling and the quality of the restoration, are important when considering therapeutic alternatives, in particular endodontic retreatment.

With regard to the type of tooth (tooth location), some studies pooled anterior teeth, premolars, and molars, whereas other studies distinguished between maxillary and mandibular anterior teeth, premolars, and molars. The latter and more detailed distinction provided interesting differences of estimated healed rates with regard to tooth location. Maxillary and mandibular anterior teeth showed relatively high estimated healed rates (above 85%), whereas mandibular molars had a low estimated healed rate of 63.7%. This finding may be correlated with the complex endodontic anatomy but also with the rather difficult access to the apices in mandibular molars. The clinician is advised to exercise caution in selecting mandibular molars for apical surgery and to consider treatment alternatives.

The factors preoperative pain and preoperative clinical signs of inflammation (sinus tract and swelling) were found to influence the outcome of apical surgery (ie, cases with preoperative pain or cases with preoperative signs had a significantly lower probability [p < 0.01] of healing compared with cases without pain or without signs). The reasons for this difference are not yet fully understood, but one may speculate that preoperative pain or signs may be associated with a (sub)acute rather than a chronic stage of infection that may compromise the healing potential of the surgical wound. Clinical signs of exacerbation, abscesses, and draining sinuses have been associated with extraradicular infections, in particular extraradicular actinomycosis (150). One may speculate that apical surgery may not always completely eradicate these bacteria with the risk of subsequent extraradicular reinfection.

Figure 10. Table and forest plot of the OR of the presence of a post/screw: post/screw versus no post/screw.

Figure 11. Table and forest plot of the OR of the type of surgery: first-time surgery versus resurgery.

Figure 12. Table and forest plot of the OR of the technique of root-end cavity preparation: bur versus microtip.

TABLE 6. Treatment-related Factors: Retrofilling Materials: Amalgam; GIC, Glass Ionomer Cement; IRM, Intermediate Restorative Material; MTA, Mineral Trioxide Aggregate; SuperEBA, Ethoxy Benzoic Acid; Retroplast; Other (N = 1889)

Author (s) (reference)	Total (N)	Healed/total amalgam (N)	Healed, amalgam (%)	Healed/total GIC (N)	Healed GIC (%)	Healed/total IRM (N)	Healed, IRM (%)
Dalal and Gohil, 1983 (117)	40	10/15	66.7	5/10	50.0	_	
Dorn and Gartner, 1990 (119)	488	171/294	58.2	_		95/129	73.6
Waikakul and Punwutikorn, 1991 (121)	62	16/23	69.6	—	—	—	—
Pantschev et al, 1994 (123)	103	27/52	51.9	_	_	_	_
Jesslén et al, 1995 (124)	82	35/41	85.4	35/41	85.4	_	_
Testori et al, 1999 (129)	302	141/207	68.1	_		_	_
Rahbaran et al, 2001 (3)	154	24/94	25.5	_		_	_
Jensen et al, 2002 (4)	122	_	_	19/62	30.6	_	_
Chong et al, 2003 (133)	108	_	_	_	_	41/47	87.2
Schwartz-Arad et al, 2003 (135)	103	10/23	43.5	_		40/80	50.0
Sahlin Platt and Wannfors, 2004 (138)	34	—	—	7/16	43.8	—	—
Lindeboom et al, 2005 (141)	100	_	_	_		43/50	86.0
von Arx et al, 2007 (6)	191	—	—	—		—	—
Total	1889	434/749	57.9	66/129	51.2	219/306	71.6

GIC, glass ionomer cement; IRM, intermediate restorative material; MTA, mineral trioxide aggregate; SuperEBA, ethoxy benzoic acid.

Figure 13. Table and forest plot of the OR of the use of an endoscope: endoscope versus no endoscope.

A number of studies have addressed the endodontic status of the tooth, with assessment of the following prognostic factors: presence of post (or screw), length of root canal filling, density of root canal filling, and endodontic retreatment before apical surgery. From the endodontist's perspective, conventional root canal retreatment should always be considered before carrying out apical surgery, provided there are no technical limitations to performing the revision and no risks for further tooth damage (151, 152). The pooled data from two studies showed higher healed rates for cases with endodontic retreatment before apical surgery than for cases without endodontic revision, but the calculated healed rates were not significantly different. With regard to the length of the existing root canal filling, the present analysis found no difference in healed rates between cases with inadequate and cases with adequate length of root canal filling. In contrast, the density of the root canal filling was found to be a significant prognostic factor (p < 0.01). This finding also supports the use of nonsurgical retreatment in teeth with a poorly condensed root canal filling. The presence (n = 877) or absence (n = 396) of a post (or screw) was evaluated in the largest number of cases with regard to endodontic factors. This prognostic factor did not prove significant with regard to healing outcome. From a clinical perspective, the length of an existing post may be more relevant in apical surgery than the presence of a post. Current recommendations in apical surgery

include a root-end resection of 3-mm length and a root-end filling of 3-mm depth (153). Hence, a long post violating these distances may compromise the technique of root-end cavity preparation and obturation. Further, post placement and root canal treatment were shown to be the major predisposing factors of vertical root fractures (154, 155). However, cases failing because of root fracture during the observation period after apical surgery should be excluded from the study material because the reason for failure is not (directly) related to apical surgery.

Further tooth-related factors included the presence and size of the lesion, and neither was found to be prognostic determinants. Cases with radiographically visible lesions had a significantly lower probability of healing than cases without a periapical lesion. Cases with a radiographically measured lesion size ≤ 5 mm showed a significantly higher probability of healing than cases with a lesion size >5 mm. This phenomenon might be explained by the fact that the healing time for a large lesion is longer or a large lesion may show scar tissue healing, making radiographic healing determination more difficult. Others have hypothesized that a small apical lesion requires surgical enlargement of the crypt to gain access, resulting in complete eradication of the pathologic tissue. When the lesion is large, access may be adequate and the crypt is not enlarged, and subsequent curettage of the pathological tissue may be incomplete (11). In addition, the "fresh" osseous wound created by

Healed/total MTA (N)	Healed, MTA (%)	Healed/total SuperEBA (N)	Healed, SuperEBA (%)	Healed/total Retroplast (N)	Healed, Retroplast (%)	Healed/total other (N)	Healed, other (%)
_	—	_	_	_		9/15 (gutta-percha with ZnO eugenol)	60.0
_	_	49/65	75.4		_		_
_	_	_	_	_	_	34/39 (gold leaf)	87.2
_	_	29/51	56.9		—	-	—
	—	—	—		—	—	—
_	_	81/95	85.3		_	—	_
_	_	19/49	38.8	_	_	4/11 (unknown)	36.4
_	_	_	_	44/60	73.3	_	_
56/61	91.8	—	—		_	—	—
	—	—	—		—	_	—
_	_	_	_		_	16/18 (compomer)	88.9
46/50	92.0	—	—		—	<u> </u>	—
46/51	90.2	42/55	76.4	72/85	84.7	_	_
148/162	91.4	220/315	69.8	116/145	80.0	63/83	75.9

Figure 14. Table and forest plot of odds ratio of the use of antibiotics: antibiotics versus no antibiotics.

the surgical enlargement of small lesions might activate bone formation, which would not be the case for the cortical bony walls of (longstanding) large lesions.

Treatment-related Factors

In contrast to patient- and tooth-related factors, most of the treatment-related factors can be influenced by the surgeon. The best documented treatment-related factor is the retrofilling material. MTA was found to have the highest (91.4%) and glass ionomer cement the lowest (51.2%) estimated healed rate. Although MTA has consistently shown high success rates above 90%, two randomized controlled trials showed no significant differences between MTA and IRM (133, 141). Future long-term studies will show if MTA can fulfill the expectations of many clinicians who use this highly biocompatible material for root-end filling.

With regard to the type of surgery, cases were classified either as first-time surgery or resurgery. First-time surgery cases had a significantly higher healed rate than resurgery cases. However, the included studies were not homogeneous (p < 0.01), mainly because of the study by Rahbaran et al (3) that had an OR that differed widely from the OR of the other included studies. Peterson and Gutmann (7) conducted a systematic review with regard to endodontic resurgery. They reported a weighted average success rate of 64.2% for first-time surgery but only 35.7% for resurgery. They speculated that the sample population that underwent resurgery may have different etiologies that delay apparent healing, or different bacteria may be present or possibly anomalous dental anatomy that lead to difficulties, all influencing the overall healing outcome in a negative way. The fact that resurgery is performed in a "negative" selection of cases (failure of previous surgery) calls for a careful evaluation, and treatment alternatives should be considered.

There was no statistically significant difference in healed rates with regard to antibiotics. In a randomized controlled trial, Lindeboom et al (66) also found no benefit of antibiotic therapy with regard to the early postsurgical course (initial 4 weeks) after periapical surgery (p = 0.448). That study was not included in this systematic review because it did not provide information about the periapical healing. With the present data, the routine administration of antibiotics is not recommended in apical surgery unless medical conditions require systemic antimicrobial therapy.

Cases treated with the use of an endoscope during apical surgery tended to have a higher healed rate than cases without the use of an endoscope (p = 0.05). However, only two studies with a total of 186 treated cases had assessed this prognostic factor. One may speculate

that the endoscope, with its high magnification, provides better identification of microstructures at the cut root end and as such may enhance the retrograde obturation of possible leakage areas. In vitro studies have documented the benefit of using an endoscope for the detection of isthmuses and dentinal cracks at the resection plane (156, 157).

Six studies have assessed the technique of root-end cavity preparation as a prognostic factor. Cases with bur preparation had a significantly lower healed rate than cases with microtip (retrotip) preparation of the root-end cavity. However, the included studies were not homogeneous (p = 0.01). The reason of the heterogeneity was the widely differing OR of the studies of Bader and Lejeune (128) and of de Lange et al (146), which both had relatively large material samples. The amount of pooled material was large with a total of 1,134 cases (654 bur cases and 480 microtip cases). The data support the use of microtips for root-end cavity preparation, a technique that was introduced in the early 1990s. The use of burs is no longer recommended for root-end cavity preparation.

Acknowledgments

We thank Mrs Brigitt Leuenberger, Librarian, School of Dental Medicine, University of Bern, Switzerland, for helping with the literature search. We are also indebted to Mr Dirk Klingbiel and Mr Gabriel Fischer, Department of Mathematical Statistics and Actuarial Science, University of Bern, Bern, Switzerland, for the statistical analysis.

References

- von Arx T. Failed root canals: The case for apicoectomy (periradicular surgery). J Oral Maxillofac Surg 2005;63:832–7.
- Lustmann J, Friedman S, Shaharabany V. Relation of pre- and intraoperative factors to prognosis of posterior apical surgery. J Endod 1991;17:239–41.
- Rahbaran S, Gilthorpe MS, Harrison SD, et al. Comparison of clinical outcome of periapical surgery in endodontic and oral surgery units of a teaching dental hospital: a retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91:700–9.
- Jensen SS, Nattestad A, Egdo P, et al. A prospective, randomized, comparative clinical study of resin composite and glass ionomer cement for retrograde root filling. Clin Oral Investig 2002;6:236–43.
- Wang N, Knight K, Dao T, et al. Treatment outcome in endodontics—The Toronto study. Phases I and II: apical surgery. J Endod 2004;30:751–61.
- von Arx T, Hänni S, Jensen SS. Clinical and radiographic assessment of various predictors for healing outcome one year after periapical surgery. J Endod 2007;33:123–8.
- Peterson J, Gutmann JL. The outcome of endodontic resurgery: a systematic review. Int Endod J 2001;34:169–75.

- Niederman R, Theodosopoulou JN. A systematic review of in vivo retrograde obturation materials. Int Endod J 2003;36:577–85.
- Mead C, Javidan-Nejad S, Mego ME, et al. Levels of evidence for the outcome of endodontic surgery. J Endod 2005;31:19–24.
- del Fabbro M, Taschieri S, Testori T, et al. Surgical versus non-surgical endodontic re-treatment for periradicular lesions (Review). Cochrane Database Systematic Rev 2007;3. CD005511.
- 11. Friedman S. The prognosis and expected outcome of apical surgery. Endod Topics 2005;11:219–62.
- Rud J, Andreasen JO, Jensen JE. Radiographic criteria for the assessment of healing after endodontic surgery. Int J Oral Surg 1972;1:195–214.
- Molven O, Halse A, Grung B. Observer strategy and the radiographic classification of healing after endodontic surgery. Int J Oral Maxillofac Surg 1987;16: 432–9.
- Malmström M, Perkki K, Lindquist K. Apicectomy—a retrospective study. Proc Finn Dent Soc 1982;78:26–31.
- Ioannides C, Borstlap WA. Apicoectomy on molars: a clinical and radiographical study. Int J Oral Surg 1983;12:73–9.
- Mikkonen M, Kullaa-Mikkonen A, Kotilainen R. Clinical and radiologic reexamination of apicoectomized teeth. Oral Surg Oral Med Oral Pathol 1983;55: 302–6.
- Sikri K, Dua SS, Kapur R. Use of tricalcium phosphate ceramic in apicoectomised teeth and in their peri-apical areas—clinical and radiological evaluation. J Indian Dent Assoc 1986;58:441–7.
- Cordes V, Schubert H, Bier J. Wurzelspitzenamputationen am Molaren mit chirurgischer Wurzelfüllung aus Titan (Apicoectomy of molars with surgical root filling using titanium) [German]. Dtsch Zahnärztl Z 1987;42:265–7.
- Franz M, Bethke K, Bier J. Wurzelspitzenamputation an 150 Molaren des Oberund Unterkiefers. (Root apex amputation in 150 maxillary and mandibular molars) [German]. Dtsch Zahnärztl Z 1987;42:287–9.
- Lambrecht JT, Härle F. Die Reaktion der Kieferhöhle auf die Wurzelspitzenresektion von Prämolaren und Molaren (The reaction of the maxillary sinus to apicoectomy of premolars and molars) [German]. Dtsch Zahnärztl Z 1987;42:26–7.
- Forssell H, Tammisalo T, Forssell K. A follow-up study of apicectomized teeth. Proc Finn Dent Soc 1988;84:85–93.
- Allen RK, Newton CW, Brown CE. A statistical analysis of surgical and nonsurgical endodontic retreatment cases. J Endod 1989;15:261–6.
- Cordes V. Wurzelspitzenresektion an 633 Molaren mit apikalen Titan- und Silberstiftfüllungen (Tooth root resection of 633 molars with apical titanium and silver points) [German]. Zahnärztl Prax 1989;40:42–8.
- Crosher RF, Dinsdale RCW, Holmes A. A one visit apicectomy technique using calcium hydroxide cement as the canal filling material combined with retrograde amalgam. Int Endod J 1989;22:283–9.
- Grung B, Molven O, Halse A. Periapical surgery in a Norwegian county hospital: follow-up findings of 477 teeth. J Endod 1990;16:411–7.
- Molven O, Halse A, Grung B. Surgical management of endodontic failures: indications and treatment results. Int Dent J 1991;41:33–42.
- Rapp EL, Brown CE, Newton CW. An analysis of success and failure of apicoectomies. J Endod 1991;17:508–12.
- Zimmermann M, Egerer R. Ergebnisse nach Insertion apikaler Verschlussstifte aus Titan bei Wurzelspitzenresektion (Results after insertion of apical titanium cones in apicoectomy) [German]. Dtsch Stomatol 1991;41:372–5.
- 29. Mitchell R. An evaluation of bone healing in cavities in the jaws implanted with a collagen matrix. Br J Oral Maxillofac Surg 1992;30:180–2.
- Bender IB, Rossman LE. Intentional replantation of endodontically treated teeth. Oral Surg Oral Med Oral Pathol 1993;76:623–30.
- 31. Gath HJ, Ahrendt B, Heissler E, et al. Prospektive randomisierte Studie zur Wurzelspitzenresektion und orthograden Wurzelfüllung mit Guttapercha- und Titanstiften im Vergleich (Prospective comparative randomized study of tooth apex resection and orthograde root filling with guttapercha and titanium pins) [German]. Fortschr Kiefer Gesichtschir 1995;40:142–3.
- 32. Herzog U, Wilksch A, Haesen Y, et al. Spätergebnisse nach Wurzelspitzenresektionen mit zwei verschiedenen Füllungsmaterialien (Results of follow-up after apicoectomy with two different root canal filling materials) [German]. Fortschr Kiefer Gesichtschir 1995;40:150–2.
- 33. Reinhart E, Reuther J, Bleymüller W, et al. Vergleichende Untersuchungen zur Wurzelspitzenresektion mit unterschiedlichen Operationstechniken und Füllungsmaterialien (Comparative studies with apicoectomy using various surgical techniques and filling materials) [German]. Fortschr Kiefer Gesichtschir 1995;40: 152–6.
- 34. Schultze-Mosgau S, Rekersbrink M, Neukam FW. Klinische und röntgenologische Erfolgsbeurteilung nach Wurzelspitzenresektionen mit Zirkonoxidkeramikstifteneine prospektive Studie an 112 wurzelspitzenresezierten Zähnen (Clinical and roentgenologic outcome evaluation after apicoectomy with zirconium oxide

ceramic pins—a prospective study of 112 apicoectomy teeth). Fortschr Kiefer Gesichtschir 1995;40:144–7.

- 35. van Doorne L, Vanderstraten C, Rhem M, et al. Stérilisation au laser CO₂ en chirurgie périradiculaire: une étude clinique de suivi (sterilisation with CO₂ laser in periradicular surgery: a clinical follow-up study) [French]. Rev Belge Méd Dent 1996;51:73–82.
- Santamaria J, Garcia AM, de Vicente JC, et al. Bone regeneration after radicular cyst removal with and without guided bone regeneration. Int J Oral Maxillofac Surg 1998;27:118–20.
- Raghoebar GM, Vissink A. Results of intentional replantation of molars. J Oral Maxillofac Surg 1999;57:240–4.
- Oginni AO, Olusile AO. Follow-up study of apicectomised anterior teeth. S Afr Dent J 2002;57:136–40.
- 39. Dietrich T, Zunker P, Dietrich D, et al. Periapical and periodontal healing after osseous grafting and guided tissue regeneration treatment of apicomarginal defects in periradicular surgery: results after 12 months. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:474–82.
- Rixecker H, Tetsch P. Marginale und paramarginale Schnittführung bei der Wurzelspitzenresektion (Marginal and para-marginal incision guides in apicoectomy) [German]. Dtsch Z Mund Kiefer GesichtsChir 1986;10:113–8.
- Becker S, Tetsch P, Karcher R, et al. Statistsche Auswertung von 9000 Wurzelspitzenresektionen. Therapiewandel bei intraoperativen Wurzelfüllungen (Statistical analysis of 9000 apicoectomies. Technical changes in intraoperative root filling) [German]. Dtsch Zahnärztl Z 1987;42:226–7.
- Bumberger-Niesslbeck U, Kunde V, Hoffmeister B. Statistische Erhebungen zu 9446 Wurzelspitzenresektionen (Statistical survey of 9446 apicoectomies) [German]. Dtsch Zahnärztl Z 1987;42:224–5.
- Jänicke S, Tetsch P. Wurzelspitzenresektion mit genormter intraoperativer Al₂O₃-Keramikstiftfüllung. (Apicoectomy with standardized intraoperative Al₂O₃ ceramic cone fillings) [German]. Dtsch Zahnärztl Z 1987;42:283–286.
- Kopp S, Hoffmeister B, Bumberger U. Komplikationen und Misserfolge der Wurzelspitzenresektion—eine Auswertung von 3281 Fällen. (Complications and failures of apicoectomies—an analysis of 3281 cases) [German]. Dtsch Zahnärztl Z 1987;42:228–30.
- Molven O, Halse A, Grung B. Observer strategy and the radiographic classification of healing after endodontic surgery. Int J Oral Maxillofac Surg 1987;16:432–9.
- 46. Morand MA. Etude sur les causes d'échecs post-endodontiques: une analyse descriptive d'une populations de 198 cas de retraitements chirurgicaux (Study on the causes of post-endodontic failures: a descriptive analysis of 198 cases of reoperation) [French]. J Can Dent Assoc 1990;56:927–32.
- 47. Meechan JG, Blair GS. The effect of two different local anaesthetic solutions on pain experience following apicectomy. Br Dent J 1993;175:410–3.
- Haas R, Mensdorff-Pouilly Riegler-Thornton B, et al. Vorteile der mikrochirurgischen Apexresektion und Retropräparation mittles Ultraschall gegenüber der herkömmlichen Wurzelspitzenresektion (Advantages of microsurgical apicoectomy and retro-preparation with ultrasound compared with current apicoectomy) [German]. Fortschr Kiefer Gesichtschir 1995;40:156–9.
- Rud J, Rud V. Surgical endodontics of upper molars: relation to the maxillary sinus and operation in acute state of infection. J Endod 1998;24:260–1.
- von Arx T, Kurt B, Ilgenstein B, et al. Preliminary results and analysis of a new set of sonic instruments for root-end cavity preparation. Int Endod J 1998;31:32–8.
- Freedman A, Horowitz I. Complications after apicoectomy in maxillary premolar and molar teeth. Int J Oral Maxillofac Surg 1999;28:192–4.
- Morgan LA, Marshall JG. A scanning electron microscopic study of in vivo ultrasonic root-end preparations. J Endod 1999;25:567–70.
- Kvist T, Reit C. Postoperative discomfort associated with surgical and nonsurgical endodontic retreatment. Endod Dent Traumatol 2000;16:71–4.
- Abramovitz I, Better H, Shacham A, et al. Case selection for apical surgery: a retrospective evaluation of associated factors and rational. J Endod 2002;28: 527–30.
- Garrett K, Kerr M, Hartwell G, et al. The effect of a bioresorbable matrix barrier in endodontic surgery on the rate of periapical healing: an in vivo study. J Endod 2002;28:503–6.
- Velvart P. Papilla base incision: a new approach to recession-free healing of the interdental papilla after endodontic surgery. Int Endod J 2002;35:453–60.
- 57. Vickers FJ, Baumgartner JC, Marshall G. Hemostatic efficacy and cardiovascular effects of agents used during endodontic surgery. J Endod 2002;28: 322-3.
- Ziegler CM, Steveling H, Fürst C, et al. Untersuchung der marginalen Schnittführung bei der Wurzelspitzenresektion (Evaluation of marginal incision for apicoectomy) [German]. Dtsch Zahnärztl Zeitschrift 2002;57:57–60.
- Velvart P, Ebner-Zimmermann U, Ebner JP. Comparison of papilla healing following sulcular full-thickness flap and papilla base flap in endodontic surgery. Int Endod J 2003;36:653–9.

- Tsesis I, Fuss Z, Lin S, et al. Analysis of postoperative symptoms following surgical endodontic treatment. Quintessence Int 2003;34:756–60.
- Kreisler MB, Haj HA, Noroozi N, et al. Efficacy of low level laser therapy in reducing postoperative pain after endodontic surgery—a randomized double blind clinical study. Int J Oral Maxillofac Surg 2004;33:38–41.
- Vy CH, Baumgartner JC, Marshall JG. Cardiovascular effects and efficacy of a hemostatic agent in periradicular surgery. J Endod 2004;30:379–83.
- Velvart P, Ebner-Zimmermann U, Ebner JP. Papilla healing following sulcular full thickness flap in endodontic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;98:365–9.
- Velvart P, Ebner-Zimmermann U, Ebner JP. Comparison of long-term papilla healing following sulcular full thickness flap and papilla base flap in endodontic surgery. Int Endod J 2004;37:687–93.
- Chong BS, Pitt Ford TR. Postoperative pain after root-end resection and filling. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:762–6.
- 66. Lindeboom JAH, Frenken JWH, Valkenburg P, et al. The role of preoperative prophylactic antibiotic administration in periapical endodontic surgery: a randomized, prospective double-blind placebo-controlled study. Int Endod J 2005;38: 877–81.
- Payer M, Jakse N, Pertl C, et al. The clinical effect of LLLT in endodontic surgery: a prospective study on 72 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:375–9.
- Tsesis I, Shoshani Y, Givol N, et al. Comparison of quality of life after surgical endodontic treatment using two techniques: a prospective study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;99:367–71.
- 69. Lin S, Levin L, Emodi O, et al. Etodolac versus dexamethasone effect in reduction of postoperative symptoms following surgical endodontic treatment: a doubleblind study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101: 814–7.
- Penarrocha M, Garcia B, Marti E, et al. Pain and inflammation after periapical surgery in 60 patients. J Oral Maxillofac Surg 2006;64:429–33.
- Garcia B, Penarrocha M, Marti E, et al. Pain and swelling after periapical surgery related to oral hygiene and smoking. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:271–6.
- Iqbal MK, Kratchman SI, Guess GM, et al. Microscopic periradicular surgery: perioperative predictors for postoperative clinical outcomes and quality of life assessment. J Endod 2007;33:239–44.
- Oberli K, Bornstein MM, von Arx T. Periapical surgery and the maxillary sinus: radiographic parameters for clinical outcome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:848–53.
- von Arx T, Vinzens-Majaniemi T, Bürgin W, et al. Changes of periodontal parameters following apical surgery: a prospective clinical study of three incision techniques. Int Endod J 2007;40:959–69.
- Happonen RP. Periapical actinomycosis: a follow-up study of 16 surgically treated cases. Endod Dent Traumatol 1986;2:205–9.
- Koeser RP, Steegmann B. Periapikale Reossifikation bei wurzelresezierten Z\u00e4hnen mit Silberstiftapplikation. (Periapical re-ossification in apicoecomized teeth using silver cones) [German]. Dtsch Zahn\u00e4rzt Z 1987;42:271–3.
- Mohr P, Tetsch P, Schaudig D. Langzeitergebnisse nach Wurzelspitzenresektionen mit intraoperativen apikalen Silberstiftfüllungen. (Long-term results of apicoectomies with intraoperative apical silver cone fillings) [German]. Dtsch Zahnärztl Z 1987;42:274–6.
- Trippler S, Tetsch P, Schmitt HJ. Fünfjährige klinische Erfahrungen mit genormten apikalen Titanstiften bei Wurzelspitzenresektionen. (5 years' clinical experience with standardized apical titanium cones during apicoectomy) [German]. Dtsch Zahnärztl Z 1987;42:277–9.
- Boiteux JP, Paré G, Robin JP. Comblement madréporaire périapical (Madreporal periapical augmentation) [French]. Rev Odontostomatol 1988;17:291–8.
- Ehrl PA. Keramische, apikale Verschlussstifte für die Wurzelspitzenresektion (Porcelain apical closure posts for tooth root resection) [German]. ZWR 1988; 97:1028–32.
- Amagasa T, Nagase M, Sato T, et al. Apicoectomy with retrograde gutta-percha root filling. Oral Surg Oral Med Oral Pathol 1989;68:339–42.
- Keller U. Aluminium oxide ceramic pins for retrograde root filling—experiences with a new system. Oral Surg Oral Med Oral Pathol 1990;69:737–42.
- Halse A, Molven O, Grung B. Follow-up after periapical surgery: the value of the one-year control. Endod Dent Traumatol 1991;7:246–50.
- Lasaridis N, Zouloumis L, Antoniadis K. Bony lid approach for apicoectomy of mandibular molars. Aust Dent J 1991;36:366–8.
- Saad AY, Abdellatief EM. Healing assessment of osseous defects of periapical lesions associated with failed endodontically treated teeth with use of freezedried bone allograft. Oral Surg Oral Med Oral Pathol 1991;7:612–7.
- Frank A, Glick DH, Patterson SS, et al. Long-term evaluation of surgically placed amalgam fillings. J Endod 1992;18:391–8.

- Ilgenstein B, Raveh J, Stich H, et al. Biocem—ein neues Material zur retrograden Wurzelfüllung (Biocem—a new material for retrograde root filling) [German]. Schweiz Monatsschr Zahnmed 1995;105:1015–22.
- Molven O, Halse A, Grung B. Incomplete healing (scar tissue) after periapical surgery—radiographic findings 8 to 12 years after treatment. J Endod 1996;22: 264–8.
- Sumi Y, Hattori H, Hayashi K, et al. Ultrasonic-root-end preparation: clinical and radiographic evaluation of results. J Oral Maxillofac Surg 1996;54:590–3.
- Sumi Y, Hattori H, Hayashi K, et al. Titanium-inlay—a new root-end filling material. J Endod 1997;23:121–3.
- Danin J, Linder LE, Lundqvist G, et al. Outcomes of periradicular surgery in cases with apical pathosis and untreated canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;87:227–32.
- Kvist T, Reit C. Results of endodontic retreatment: a randomized clinical study comparing surgical and nonsurgical procedures. J Endod 1999;25:814–7.
- von Arx T, Kurt B. Root-end cavity preparation after apicoectomy using a new type of sonic and diamond-surfaced retrotip: a 1-year follow-up study. J Oral Maxillofac Surg 1999;57:656–61.
- von Arx T, Gerber C, Hardt N. Periradicular surgery of molars: a prospective clinical study with a one-year follow-up. Int Endod J 2001;34:520–5.
- Cantelmi G, Frei C, von Arx T. Der Periotest in der periradikulären Chirurgie: vorläufige Resultate einer klinisch-prospektiven Studie (Periotest-analysis in periradicular surgery: preliminary results of a clinical-prospective study) [German]. Schweiz Monatsschr Zahnmed 2005;115:903–8.
- Leco MI, Martinez JM, Donado M. Clinical and radiological course in apicoectomies with the Erbium:YAG laser. Med Oral Patol Oral Cir Bucal 2007;12: E65–9.
- Penarrocha M, Marti E, Garcia B, et al. Relationship of periapical lesion radiologic size, apical resection, and retrograde filling with the prognosis of periapical surgery. J Oral Maxillofac Surg 2007;65:1526–9.
- von Arx T, Hänni S, Jensen SS. Correlation of bone defect dimensions with healing outcome one year after apical surgery. J Endod 2007;33:1044–8.
- 99. Yazdi PM, Schou S, Jensen SS, et al. Dentine-bonded resin composite (Retroplast) for root-end filling: a prospective clinical and radiographic study with a mean follow-up period of 8 years. Int Endod J 2007;40:493–503.
- 100. Reit C, Hirsch J. Surgical endodontic retreatment. Int Endod J 1986;19:107-12.
- Stassen LFA, Hislop WS, Still DM, et al. Use of anorganic bone in periapical defects following apical surgery—a prospective trial. Br J Oral Maxillofac Surg 1994;32: 83–5.
- 102. Pecora G, Kim S, Celletti R, et al. The guided tissue regeneration principle in endodontic surgery: one-year postoperative results of large periapical lesions. Int Endod J 1995;28:41–6.
- 103. Pecora G, de Leonardis D, Ibrahim N, et al. The use of calcium sulphate in the surgical treatment of a "through and through" periradicular lesion. Int Endod J 2001;34:189–97.
- Tobon SI, Arismendi JA, Marin ML, et al. Comparison between a conventional technique and two bone regeneration techniques in periradicular surgery. Int Endod J 2002;35:635–41.
- 105. Marin ML, Dominguez JS, Arismendi JA, et al. Healing response of apicomarginal defects to two guided tissue regeneration techniques in periradicular surgery: a double-blind, randomized clinical trial. Int Endod J 2006;39:368–77.
- 106. Taschieri S, del Fabbro M, Testori T, et al. Efficacy of xenogeneic bone grafting with guided tissue regeneration in the management of bone defects after surgical endodontics. J Oral Maxillofac Surg 2007;65:1121–7.
- Rud J, Munksgaard EC, Andreasen JO, Rud V. Retrograde root filling with composite and a dentin-bonding agent. Endod Dent Traumatol 1991;7:126–31.
- Zetterqvist L, Holmlund A. Apicectomy: a comparative clinical study of amalgam and glass ionomer cement as apical sealants. Oral Surg Oral Med Oral Pathol 1991;71:489–91.
- Rud J, Rud V, Munksgaard EC. Retrograde root filling with dentin-bonded modified resin composite. J Endod 1996;22:477–80.
- Rubinstein RA, Kim S. Short-term observation of the results of endodontic surgery with the use of a surgical operation microscope and Super-EBA as root-end filling material. J Endod 1999;25:43–8.
- 111. Rud V, Munksgaard EC. Heling efter retrograd rodforsegling af molarer i underkaeben med dentinbinder og plast (Healing of mandibular molars after rootend sealing with dentine-bonded composite) [Danish]. Tandlaegebladet 2002; 106:882–8.
- 112. Jensen SS, Schou S. Retrograd rodfyldning med komposit plast eller glasionomercement. En prospektiv, randomiseret klinisk undersogelse (Retrograde root filling with resin composite or glass ionomer cement. A prospective randomized clinical study) [Danish]. Tandlaegebladet 2004;108:412–7.
- Lyons AJ, Hughes CE, Dixon EJA. A 5-year audit of outcome of apicoectomies carried out in a district general hospital. Ann R Coll Surg Engl 1995;77:273–7.

- 114. Jansson L, Sandstedt P, Laftman AC, et al. Relationship between apical and marginal healing in periradicular surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997;83:596–601.
- 115. Rud J, Rud V, Munksgaard EC. Periapical healing of mandibular molars after rootend sealing with dentine-bonded composite. Int Endod J 2001;34:285–92.
- 116. Persson G. Periapical surgery of molars. Int J Oral Surg 1982;11:96-100.
- 117. Dalal MB, Gohil KS. Comparison of silver amalgam, glass ionomer cement & gutta percha as retrofilling materials, an in vivo & an in vitro study. J Indian Dent Assoc 1983;55:153–8.
- 118. Skoglund A, Persson G. A follow-up study of apicoectomized teeth with total loss of the buccal bone plate. Oral Surg Oral Med Oral Pathol 1985;59:78–81.
- 119. Dorn SO, Gartner AH. Retrograde filling materials: a retrospective success-failure study of amalgam, EBA, and IRM. J Endod 1990;16:391-3.
- 120. Friedman S, Lustmann J, Shaharabany V. Treatment results of apical surgery in premolar and molar teeth. J Endod 1991;17:30–3.
- Waikakul A, Punwutikorn J. Clinical study of retrograde filling with gold leaf: comparison with amalgam. Oral Surg Oral Med Oral Pathol 1991;71:228–31.
- Cheung LK, Lam J. Apicectomy of posterior teeth—a clinical study. Aust Dent J 1993;38:17–21.
- Pantschev A, Carlsson AP, Andersson L. Retrograde root filling with EBA cement or amalgam. A comparative clinical study. Oral Surg Oral Med Oral Pathol 1994;78: 101–4.
- 124. Jesslén P, Zetterqvist L, Heimdahl A. Long-term results of amalgam versus glass ionomer cement as apical sealant after apicectomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995;79:101–3.
- August DS. Long-term, postsurgical results on teeth with periapical radiolucencies. J Endod 1996;22:380–3.
- 126. Danin J, Strömberg T, Forsgren H, et al. Clinical management of nonhealing periradicular pathosis. Surgery versus endodontic retreatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:213–7.
- 127. Rud J, Rud V, Munksgaard EC. Effect of root canal contents on healing of teeth with dentin-bonded resin composite retrograde seal. J Endod 1997;23:535-41.
- 128. Bader G, Lejeune S. Prospective study of two retrograde endodontic apical preparations with and without the use of CO_2 laser. Endod Dent Traumatol 1998;14: 75–8.
- Testori T, Capelli M, Milani S, et al. Success and failure in periradicular surgery. A longitudinal retrospective analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;87:493–8.
- Zuolo ML, Ferreira MOF, Gutmann JL. Prognosis in periradicular surgery: a clinical prospective study. Int Endod J 2000;33:91–8.
- 131. Rubinstein RA, Kim S. Long-term follow-up of cases considered healed one year after apical microsurgery. J Endod 2002;28:378–83.
- 132. Vallecillo M, Munoz E, Reyes C, et al. Cirugia periapical de 29 dientes. Comparacion entre tecnica convencional, microsierra y uso de ultrasonidos (Periapical surgery of 29 teeth. Comparison between conventional technique, microsaw and use of ultrasonics) [Spanish]. Med Oral 2002;7:46–53.
- Chong BS, Pitt Ford TR, Hudson MB. A prospective clinical study of MTA and IRM when used as root-end filling materials in endodontic surgery. Int Endod J 2003; 36:520–6.
- Maddalone M, Gagliani M. Periapical endodontic surgery: a 3-year follow-up study. Int Endod J 2003;36:193–8.
- 135. Schwartz-Arad D, Yarom N, Lustig JP, et al. A retrospective radiographic study of root-end surgery with amalgam and intermediate restorative material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:472–7.
- 136. von Arx T, Frei C, Bornstein MM. Periradikuläre Chirurgie mit und ohne Endoskopie: eine klinisch-prospektive Vergleichsstudie (Periradicular surgery with and without endoscopy: a clinical and prospective study) [German]. Schweiz Monatsschr Zahnmed 2003;113:860–5.

- 137. Wesson CM, Gale TM. Molar apicectomy with amalgam root-end filling: results of a prospective study in two district general hospitals. Brit Dent J 2003;195: 707–14.
- Sahlin Platt A, Wannfors K. The effectiveness of compomer as a root-end filling: a clinical investigation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:508–12.
- 139. Wang Q, Cheung GSP, Ng RPY. Survival of surgical endodontic treatment performed in a dental teaching hospital: a cohort study. Int Endod J 2004;37: 764-75.
- 140. Gagliani MM, Gorni FGM, Strohmenger L. Periapical resurgery versus periapical surgery: a 5-year longitudinal comparison. Int Endod J 2005;38:320–7.
- 141. Lindeboom JAH, Frenken JWH, Kroon FHM, et al. A comparative prospective randomized clinical study of MTA and IRM as root-end filling materials in single-rooted teeth in endodontic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:495–500.
- 142. Taschieri S, del Fabbro M, Testori T, et al. Endodontic surgery with ultrasonic retrotips: one-year follow-up. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:380–7.
- 143. Filippi A, Lüthi Meier M, Lambrecht JT. Endoskopische Wurzelspitzenresektion—eine klinisch-prospektive Studie (Periradicular surgery with endoscopy—a clinical prospective study) [German]. Schweiz Monatsschr Zahnmed 2006;116:12–7.
- 144. Taschieri S, del Fabbro M, Testori T, et al. Endodontic surgery using 2 different magnification devices: preliminary results of a randomized controlled study. J Oral Maxillofac Surg 2006;64:235–42.
- 145. Tsesis I, Rosen E, Schwartz-Arad D, et al. Retrospective evaluation of surgical endodontic treatment: traditional versus modern technique. J Endod 2006;32: 412–6.
- 146. de Lange J, Putters T, Baas EM, et al. Ultrasonic root-end preparation in apical surgery: a prospective randomized study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:841–5.
- 147. Wälivaara DA, Abrahamsson P, Isaksson S, et al. Prospective study of periapically infected teeth treated with periapical surgery including ultrasonic preparation and retrograde IRM root-end fillings. J Oral Maxillofac Surg 2007;65:931–5.
- 148. Taschieri S, del Fabbro M, Testori T, et al. Endodontic reoperation using an endoscope and microsurgical instruments: one year follow-up. Br J Oral Maxillofac Surg 2007;45:582–5.
- Duncan HF, Pitt Ford TR. The potential association between smoking and endodontic disease. Int Endod J 2006;39:843–54.
- Nair PNR. On the causes of persistent apical periodontitis: a review. Int Endod J 2006;39:249–81.
- Wu MK, Dummer PMH, Wesselink PR. Consequences of and strategies to deal with residual post-treatment root canal infection. Int Endod J 2006;39:343–56.
- European Society of Endodontology. Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. Int Endod J 2006;39: 921–30.
- Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod 2006;32:601–23.
- 154. Fuss Z, Lustig J, Katz A, et al. An evaluation of endodontically treated vertical root fractured teeth: impact of operative procedures. J Endod 2001;27:46–8.
- Cohen S, Blanco L, Berman L. Vertical root fractures. Clinical and radiographic diagnosis. J Am Dent Assoc 2003;134:434–41.
- 156. Slaton CC, Loushine RJ, Weller RN, et al. Identification of resected root-end dentinal cracks: a comparative study of visual magnification. J Endod 2003;29: 519–22.
- von Arx T, Montagne D, Zwinggi C, et al. Diagnostic accuracy of endoscopy in periradicular surgery—a comparison with scanning electron microscopy. Int Endod J 2003;36:691–9.